29 research outputs found

    Some Supplementaries to The Counting Semantics for Abstract Argumentation

    Full text link
    Dung's abstract argumentation framework consists of a set of interacting arguments and a series of semantics for evaluating them. Those semantics partition the powerset of the set of arguments into two classes: extensions and non-extensions. In order to reason with a specific semantics, one needs to take a credulous or skeptical approach, i.e. an argument is eventually accepted, if it is accepted in one or all extensions, respectively. In our previous work \cite{ref-pu2015counting}, we have proposed a novel semantics, called \emph{counting semantics}, which allows for a more fine-grained assessment to arguments by counting the number of their respective attackers and defenders based on argument graph and argument game. In this paper, we continue our previous work by presenting some supplementaries about how to choose the damaging factor for the counting semantics, and what relationships with some existing approaches, such as Dung's classical semantics, generic gradual valuations. Lastly, an axiomatic perspective on the ranking semantics induced by our counting semantics are presented.Comment: 8 pages, 3 figures, ICTAI 201

    RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos

    Full text link
    Obtaining the ground truth labels from a video is challenging since the manual annotation of pixel-wise flow labels is prohibitively expensive and laborious. Besides, existing approaches try to adapt the trained model on synthetic datasets to authentic videos, which inevitably suffers from domain discrepancy and hinders the performance for real-world applications. To solve these problems, we propose RealFlow, an Expectation-Maximization based framework that can create large-scale optical flow datasets directly from any unlabeled realistic videos. Specifically, we first estimate optical flow between a pair of video frames, and then synthesize a new image from this pair based on the predicted flow. Thus the new image pairs and their corresponding flows can be regarded as a new training set. Besides, we design a Realistic Image Pair Rendering (RIPR) module that adopts softmax splatting and bi-directional hole filling techniques to alleviate the artifacts of the image synthesis. In the E-step, RIPR renders new images to create a large quantity of training data. In the M-step, we utilize the generated training data to train an optical flow network, which can be used to estimate optical flows in the next E-step. During the iterative learning steps, the capability of the flow network is gradually improved, so is the accuracy of the flow, as well as the quality of the synthesized dataset. Experimental results show that RealFlow outperforms previous dataset generation methods by a considerably large margin. Moreover, based on the generated dataset, our approach achieves state-of-the-art performance on two standard benchmarks compared with both supervised and unsupervised optical flow methods. Our code and dataset are available at https://github.com/megvii-research/RealFlowComment: ECCV 2022 Ora

    Evolutionary trajectory of the replication mode of bacterial replicons

    Get PDF
    As typical bacterial replicons, circular chromosomes replicate bidirectionally and circular plasmids replicate either bidirectionally or unidirectionally. Whereas the finding of chromids (plasmid-derived chromosomes) in multiple bacterial lineages provides circumstantial evidence that chromosomes likely evolved from plasmids, all experimentally assayed chromids were shown to use bidirectional replication. Here, we employed a model system, the marine bacterial genus Pseudoalteromonas, members of which consistently carry a chromosome and a chromid. We provide experimental and bioinformatic evidence that while chromids in a few strains replicate bidirectionally, most replicate unidirectionally. This is the first experimental demonstration of the unidirectional replication mode in bacterial chromids. Phylogenomic and comparative genomic analyses showed that the bidirectional replication evolved only once from a unidirectional ancestor and that this transition was associated with insertions of exogenous DNA and relocation of the replication terminus region (ter2) from near the origin site (ori2) to a position roughly opposite it. This process enables a plasmid-derived chromosome to increase its size and expand the bacterium’s metabolic versatility while keeping its replication synchronized with that of the main chromosome. A major implication of our study is that the uni- and bidirectionally replicating chromids may represent two stages on the evolutionary trajectory from unidirectionally replicating plasmids to bidirectionally replicating chromosomes in bacteria. Further bioinformatic analyses predicted unidirectionally replicating chromids in several unrelated bacterial phyla, suggesting that evolution from unidirectionally to bidirectionally replicating replicons occurred multiple times in bacteria

    Fast Algorithm for Non-Stationary Gaussian Process Prediction

    No full text
    Algorithm's time complexity is an essential issue for time series prediction in numerous practices.A novel fast exact inference method for Gaussian process model is proposed in this paper to accelerate the task of non-stationary time series prediction. Experiment was done on the real world power load data
    corecore